
Computers & Industrial Engineering 188 (2024) 109903

Available online 13 January 2024
0360-8352/© 2024 Elsevier Ltd. All rights reserved.

Multi-resource constrained flexible job shop scheduling problem with
fixture-pallet combinatorial optimisation

Molin Liu a, Jun Lv b, Shichang Du a,*, Yafei Deng a, Xiaoxiao Shen a, Yulu Zhou a

a Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
b Faculty of Economics and Management, East China Normal University, Shanghai 200241, People’s Republic of China

A R T I C L E I N F O

Keywords:
Flexible job shop
Mixed integer programming
Fixture-pallet constraint
Feasibility correction strategy
Genetic algorithm
self-learning VNS

A B S T R A C T

There is a lack of research on the flexible job shop scheduling problem (FJSP) considering limited fixture-pallet
resources in multi-product mixed manufacturing workshops. However, field research in a leading engine
manufacturer in China has revealed that fixture-pallet resources are a key factor limiting capacity breakthroughs
although they play an auxiliary role in the production process. Thus, in this paper, we propose a methodology for
the multi-resource constrained flexible job shop scheduling problem with fixture-pallet combinatorial optimi-
sation. First, a mixed integer programming model with machine-fixture-pallet constraints is constructed aiming
to minimize makespan. Then, a novel genetic algorithm integrated with feasibility correction strategy and self-
learning variable neighbourhood search (VNS) is proposed to address the complicated scheduling problem,
where the feasibility correction strategy is designed to solve potential conflict between machine selection and
fixture selection chromosomes and self-learning VNS is executed to further improve the optimisation capability.
Moreover, the effectiveness and efficiency of proposed algorithm are demonstrated by computational experi-
ments with real data from cooperated engine manufacturing plant, which would provide convincing support for
real production scheduling under complex scenarios.

1. Introduction

Smart factory, probably the most significant concept within Industry
4.0, draws a blueprint with a fully connected manufacturing system,
where preeminent cyber technology and physical technology are
applied instead of human force (Cañas, Mula, Díaz-Madroñero, &
Campuzano-Bolarín, 2021; Osterrieder, Budde, & Friedli, 2020). As a
critical component of manufacturing system, scheduling involves
determining the sequence of production operations, allocating re-
sources, and setting timelines for completion. To achieve the objective of
minimizing costs and improving overall productivity, scheduling holds
an urgent need for intelligent upgrades.

With augmenting customer demand for personalization and intense
market competition, the diversification of product types with different
process routes and multiple possibilities of machine selection become
the notable features of production mode in manufacturing industry.
Scheduling with the characteristics above is defined as the flexible job
shop scheduling problem (FJSP), which consists of two subproblems:
machine selection and operation sequencing (Li et al., 2017). It is a

combinatorial optimisation problem that seeks to determine an optimal
schedule for a set of jobs with multiple operations to be processed on a
set of machines. And there is a well-established methodological system
for the study of typical FJSP. However, in real-world production sce-
narios, the influence of auxiliary resources on scheduling should not be
underestimated, and representatives of such critical resources are fixture
and pallet.

Fixtures, normally held by pallets, play a pivotal role in the
manufacturing process by serving as essential tools for fixating, posi-
tioning and supporting workpieces (Gothwal & Raj, 2017). The limited
availability of fixture-pallet resources often acts as a bottleneck,
restricting further improvement in production capacity, and can even
result in unfavorable outcomes such as production stagnation or delay.
Moreover, suboptimal fixture-pallet combinations can exacerbate the
impact of this bottleneck. Considering there is rare research on this
issue, studying FJSP with fixture-pallet constraints holds great signifi-
cance in the intelligent transformation of the manufacturing industry.

In this paper, we focus on the multi-resource constrained flexible job
shop scheduling problem with fixture-pallet combinatorial optimisation

* Corresponding author.
E-mail addresses: toujours.molin@sjtu.edu.cn (M. Liu), jlv@dbm.ecnu.edu.cn (J. Lv), lovbin@sjtu.edu.cn (S. Du), phoenixdyf@sjtu.edu.cn (Y. Deng), sjtusxx98@

sjtu.edu.cn (X. Shen), yuluzhou@sjtu.edu.cn (Y. Zhou).

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

https://doi.org/10.1016/j.cie.2024.109903
Received 7 April 2023; Received in revised form 4 October 2023; Accepted 10 January 2024

mailto:toujours.molin@sjtu.edu.cn
mailto:jlv@dbm.ecnu.edu.cn
mailto:lovbin@sjtu.edu.cn
mailto:phoenixdyf@sjtu.edu.cn
mailto:sjtusxx98@sjtu.edu.cn
mailto:sjtusxx98@sjtu.edu.cn
mailto:yuluzhou@sjtu.edu.cn
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2024.109903
https://doi.org/10.1016/j.cie.2024.109903
https://doi.org/10.1016/j.cie.2024.109903
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2024.109903&domain=pdf

Computers & Industrial Engineering 188 (2024) 109903

2

(MRFJSP-FPCO). A mixed integer programming (MIP) model with
machine-fixture-pallet constraints is constructed to minimize the
maximal completion time of production tasks as well as provide an
optimal strategy for fixture-pallet combination. To handle with the
complexity of solving under large-scale scheduling scenarios, we design
an improved genetic algorithm, in which a feasibility correction strategy
targeting on fixture-pallet relationship and a self-learning variable
neighbourhood search (VNS) are involved. And first-hand data from a
leading Chinese engine manufacturer is employed to evaluate the per-
formance of the proposed algorithm, which demonstrates remarkable
advantages of our approach.

The remainder of this paper is organised as follows. Section 2 reviews
previous studies on FJSP. Problem description and mathematical
formulation are presented in Section 3. In Section 4, an advanced and
innovative algorithm is proposed to solve the problem. And Section 5
conducts the numerical experiments and analyses the corresponding
results. Finally, Section 6 summarises the conclusions and prospects.

2. Literature review

As an extension of typical job shop scheduling problem (JSP), FJSP
was first proposed in 1990 (Brucker & Schlie, 1990) and it has been
proven to be a NP-hard problem (Fattahi, Saidi Mehrabad, & Jolai,
2007). Over the past 33 years, many researchers have applied various
methods and techniques to solve JFSP. And the optimisation algorithms
for FJSP could be divided into two categories: exact optimisation
methods and approximate methods (Zhang, Ding, Zou, Qin, & Fu, 2019).

Representatives of exact optimisation algorithms are mathematical
programming approach, branch and bound method (B&B), and Benders
decomposition. Meng, Zhang, Ren, Zhang, and Lv (2020) formualted
four mixed integer programming models which are sequence-based,
position-based, time-indexed and adjacent sequence-based respectively
and designed an efficient constraint programming model to solve the
problem. Soto et al. (2020) presented a novel parallel branch and bound
algorithm where shared-memory architectures were implemented to
solve the multi-objective FJSP. Naderi and Roshanaei (2022) integrated
Benders decomposition with constraint programming and demonstrated
that its performance was better than other well-known methods.
Although exact algorithms can theoretically lead to optimal solutions,
research on approximate methods cannot be ignored, considering FJSP’s
NP-hard nature and the large size of problems in reality.

As computer technology and intelligent algorithms progress inces-
santly, various metaheuristics like particle swarm optimisation (PSO),
genetic algorithms (GA), simulated annealing (SA) and even some ma-
chine learning tools like neural networks (NN) and reinforcement
learning (RL) are utilized in FJSP. Pezzella, Morganti, and Ciaschetti
(2008) designed a GA for FJSP involving various strategies for initiali-
zation, selection and reproduction, which had a profound influence for
subsequent scholars. Li, Gong, and Lu (2022) focused on FJSP with fuzzy
processing time to achieve a multi objective of minimizing the makespan
and total workload, and proposed a self-adaptive evolutionary algorithm
with decomposition, which proved to be more effective than other well-
known algorithms. Ding and Gu (2020) designed an improved PSO al-
gorithm for FJSP, which was achieved by innovative encoding/decoding
scheme, information communication between particles and enhance-
ment of machine selection rule. Ren et al. (2021) considered energy
consumption in FJSP and presented an integrated heuristic algorithm
combining PSO and GA to solve the established multi-objective problem.
Fan, Shen, Gao, Zhang, and Zhang (2021) proposed a Jaya algorithm
hybrid with tabu search (TS) to handle with FJSP and considered the
multiple critical paths as the main bottleneck which lacked a formal
discussion in previous literature. Hajibabaei and Behnamian (2021)
considered unrelated parallel machines as well as sequence-dependent
setup time in a multi-objective FJSP, where a TS algorithm was
designed targeting on large-size instances. Defersha, Obimuyiwa, and
Yimer (2022) introduced the assumption of machine tenders in FJSP and

formulated a mathematical model for FJSP with setup operator con-
straints, which was solved by a SA algorithm. Chen, Yang, Li, and Wang
(2020) addressed FJSP by a self-learning GA whose key parameters
could be adjusted based on reinforcement learning method, which
outperformed common approximate algortihsm with fixed pamaters.
Müller, Müller, Kress, and Pesch (2022) trained a prediction model with
the aid of decision trees and deep neural networks, which aimed to select
most suitable constraint programming solvers for specific FJSP in-
stances. Lei et al. (2022) constructed an end-to-end deep reinforcement
learning (DRL) framework to solve FJSP by automatically learn policies
consisting of two sub-policies called operation policy and machine
policy from a large number of instances.

However, auxiliary resources are not supposed to be ignored in FJSP
research as they are usually the key constraints to production sched-
uling. Common extra resources in FJSP include manpower, cutters,
fixtures, pallets and so on. Gong, Chiong, Deng, and Gong (2020)
introduced a mathematical model for FJSP with worker flexibility,
incorporating a hybrid ABC algorithm with local search strategy, which
effectively mitigated production costs and address manpower-related
bottleneck issues. Fan et al. (2022) considered reconfigurable machine
reconfigurations with auxiliary modules in FJSP and designed an
improved GA, where a disjunctive graph and a modified k-insertion
were applied to analyze the bottlenecks. Tian, Gao, Zhang, Chen, and
Wang (2023) studied the impact of cutting-tool degradation in
manufacturing process and formulated a FJSP model hybrid with tool
life prediction as well as machining power prediction. Vallikavungal
Devassia, Salazar-Aguilar, and Boyer (2018) got inspired by a real sit-
uation of a brewing company and proposed a FJSP with resource re-
covery constraints, which supposed that auxiliary resources required a
recovery time between each batch. As for fixtures resources, Chan,
Wong, and Chan (2006) considered fixture and tool constraints in FJSP,
but every operation had only one specific fixture in their hypothesis.
Thörnblad, Strömberg, Patriksson, and Almgren (2015) focused on a
real-life production scenario in Sweden and formulated a FJSP model
with fixture availability as well as preventive maintenance re-
quirements, which was solved by a fast iterative approach with great
advantage in computation time. Wu, Peng, Xiao, and Wu (2021) pre-
sented research on FJSP with the loading and unloading time of fixtures,
where a multi-objective mathematical model was formulated and an
improved non-dominated sorting genetic algorithm II (NSGA- II) with
setup-time reduction strategy was proposed to solve the problem.

The brief literature above shows that many studies around FJSP have
noted the importance of ancillary resources in production scheduling.
However, limited works have focused on fixtures, especially as flexible
resources. Besides, there is no similar research like ours to solve FJSP
and optimize fixture-pallet combination solutions at the same time.
Therefore, it is necessary and significant to describe MRFJSP-FPCO in a
mathematical form and develop an efficient and superior algorithm to
solve it.

3. Problem formulation

3.1. Problem description

The proposed MRFJSP-FPCO is defined as follows. The product set,
machine set, fixture set, and pallet set are noted as I, M, F, and P
respectively. Ji refers to the process route of product i(i ∈ I) and Oi,j

represents the j th operation of product i(i ∈ I,Oi,j ∈ Ji). Every machine
m(m ∈ M) is equipped with a pallet station p(p ∈ P) to hold necessary
fixtures, which are used to support products. Matching of fixtures and
pallets is done before production starts, which indicates that every
fixture will stay at the same pallet till all tasks are completed. Prior in-
formation about all process routes Ji(i ∈ I) is fixed and the
manufacturing will be executed in strict accordance with it. Besides,
every operation Oi,j has an eligible machine set M(Oi,j) and an eligible

M. Liu et al.

Computers & Industrial Engineering 188 (2024) 109903

3

fixture set F(Oi,j), and the processing time might vary depending on
which machine is chosen to operate. MRFJSP-FPCO is concerned with
arranging appropriate machine and fixture for every operation,
sequencing all operations, and providing a reasonable fixture-pallet
matching plan to minimize the makespan, while meeting the various
resources constraints. Assumptions below should also be satisfied in
MRFJSP-FPCO:

(1) Every product i(i ∈ I) can be processed from time 0.
(2) The processing is supposed to be continuous, break-down is not

allowed in principle once started.
(3) Every machine m(m ∈ M) is only available for one single opera-

tion Oi,j of one product at the same time.
(4) Every fixture f(f ∈ F) can hold at most one single operation Oi,j of

product at the same time.
(5) Setup time of machines and fixtures is ignored during the process.
(6) Fixture-pallet resources can satisfy the production demand

although they are sparse, which means that extreme cases where
operations executed on different machines rely on a single
selectable fixture are not considered.

To provide a more intuitive comprehension, an example of three
products’ process information is shown in Table 1. There are four op-
erations for product 1 and three operations for both product 2 and
product 3. It is clear to find that one single operation could have several
eligible machines and fixtures, which may require different processing
time. For instance, the first operation of product 1O1,1 could be assigned
to either M1 or M2 with processing time 12min and 10min respectively.

Without fixture-pallet constraints, a typical FJSP only focuses on
operation sequencing and machine selection, and several feasible
scheduling schemes are shown in Fig. 1(a), (b) and (c). While in
MRFJSP-FPCO, limited fixture resources and multi-possible combina-
torial approaches suddenly arouse the complexity of scheduling. As
shown in Fig. 1(d), O1,1, O1,2, and O2,1 must be done in M1 as F2 is not
available and F1 is held by P1 of M1. However, similar condition still
exists in Fig. 1(e) because F1 and F2 are put in P1 of M1 although both
are available, which proves the necessity of fixture-pallet combinatorial
optimisation. And Fig. 1(f) presents a good example of scheduling with
an appropriate fixture arrangement. It is worth noting that the makespan
in FJSP-FPCO is longer than typical FJSP in this example, which is
reasonable because fixture resource F3 is a bottleneck requirement for
both product 1 and product 2.

3.2. Mathematical formulation

To provide an optimal scheduling plan as well as an ideal fixture-
pallet combination strategy under complicated trio-resource con-
straints, we formulate a mixed integer programming model with the
target of minimizing the makespan based on the assumptions above. And
the notation involved in the model is defined in Table 2. The pallet’s
entity is not necessary to add in this model, given that each machine is

equipped with a pallet station.
The MIP model of MRFJSP-FPCO is shown below.

minCmax

s.t.

∑

f∈Fi,j

∑

m∈Mi,j

Xi,j,m,f = 1, ∀i ∈ I,∀j ∈ Ji (1)

Um,f ≥ 1 − L⋅
(
1 − Xi,j,m,f

)
,∀i ∈ I, ∀j ∈ Ji,∀m ∈ Mi,j,∀f ∈ Fi,j (2)

∑

m′∈Mi,j\m

Um′,f ≤ 0+L⋅
(
1 − Xi,j,m,f

)
,∀i ∈ I,∀j ∈ Ji, ∀m ∈ Mi,j, ∀f ∈ Fi,j (3)

Xi,j,m,f ≤ 0+ L⋅Um,f ,∀i ∈ I,∀j ∈ Ji, ∀m ∈ Mi,j,∀f ∈ Fi,j (4)

Si,j +
∑

m∈Mi,j

(

pi,j,m⋅
∑

f∈Fi,j
Xi,j,m,f

)

≤ Ci,j, ∀i ∈ I, ∀j ∈ Ji (5)

Si,j+1 ≥ Ci,j,∀i ∈ I,∀j ∈ Ji (6)

Si,j ≥ Ci′,j′ − L⋅

(

2 −
∑

f∈Fi,j
Xi,j,m,f −

∑

f∈F
i′,j′

Xi′,j′,m,f

)

− L⋅Yi,j,i′,j′,m,∀i ∈ I,∀j

∈ Ji, ∀i′∈ I\i,∀j′ ∈ Ji′,∀m ∈ Mi,j ∩ Mi′,j′

(7)

Si′,j′ ≥ Ci,j − L⋅

(

2 −
∑

f∈Fi,j
Xi,j,m,f −

∑

f∈F
i′,j′

Xi′,j′,m,f

)

− L⋅
(
1 − Yi,j,i′,j′,m

)
,∀i

∈ I,∀j ∈ Ji, ∀i′∈ I\i,∀j′ ∈ Ji′,∀m ∈ Mi,j ∩ Mi′,j′

(8)

Si,j ≥ Ci′,j′ − L⋅

(

2 −
∑

m∈Mi,j
Xi,j,m,f −

∑

m∈M
i′,j′

Xi′,j′,m,f

)

− L⋅Zi,j,i′,j′,f ,∀i ∈ I, ∀j

∈ Ji, ∀i′∈ I\i,∀j′ ∈ Ji′,∀f ∈ Fi,j ∩ Fi′,j′

(9)

Si′,j′ ≥ Ci,j − L⋅

(

2 −
∑

m∈Mi,j
Xi,j,m,f −

∑

m∈M
i′,j′

Xi′,j′,m,f

)

− L⋅(1 − Zi,j,i′,j′,f), ∀i

∈ I,∀j ∈ Ji, ∀i′ ∈ I\i,∀j′ ∈ Ji′,∀f ∈ Fi,j ∩ Fi′,j′

(10)

Yi,j,i′,j′,m ≤
∑

f∈Fi,j
Xi,j,m,f ,∀i ∈ I,∀j ∈ Ji,∀m ∈ Mi,j (11)

Yi,j,i′,j′,m ≤
∑

f∈F
i′,j′

Xi′,j′,m,f ,∀i′ ∈ I, ∀j′ ∈ Ji′,∀m ∈ Mi′,j′ (12)

Table 1
Schematic table of products’ process information.

Product Operation Machine Set Fixture Set

M1 M2 M3 M4 F1 F2 F3 F4 F5

product1 O1,1 12min 10min — — ✓ ✓ — — —
O1,2 5min 5min — — ✓ ✓ — — —
O1,3 — — 8min 8min — — ✓ — —
O1,4 — — 10min 11min — — ✓ — —

product2 O2,1 15min 15min — — ✓ ✓ — — —
O2,2 — — 8min 9min — — ✓ — —
O2,3 — — 12min 10min — — ✓ — —

product3 O3,1 6min — 6min — — — — ✓ —
O3,2 8min — 8min — — — — ✓ —
O3,3 — 10min — 9min — — — — ✓

M. Liu et al.

Computers & Industrial Engineering 188 (2024) 109903

4

Zi,j,i′,j′,f ≤
∑

m∈Mi,j
Xi,j,m,f ,∀i ∈ I,∀j ∈ Ji, ∀f ∈ Fi,j (13)

Zi,j,i′,j′,f ≤
∑

m∈M
i′,j′

Xi′,j′,m,f , ∀i′ ∈ I,∀j′ ∈ Ji′, ∀f ∈ Fi′,j′ (14)

Cmax ≥ Ci,j, ∀i ∈ I, ∀j ∈ Ji (15)

Xi,j,m,f ∈ {0, 1}, ∀i ∈ I, ∀j ∈ Ji,∀m ∈ Mi,j,∀f ∈ Fi,j (16)

Yi,j,i′,j′,m, Zi,j,i′,j′,f ∈ {0, 1}, ∀i ∈ I,∀j ∈ Ji,∀i′∈ I\i, ∀j′ ∈ Ji′,∀m ∈ Mi,j ∩ Mi′,j′,∀f

∈ Fi,j ∩ Fi′,j′

(17)

Um,f ∈ {0, 1},∀m ∈ M,∀f ∈ F (18)

Si,j,Ci,j,Cmax ≥ 0,∀i ∈ I,∀j ∈ Ji (19)

The objective function aims to minimize the makespan. Constraints
(1) guarantee that every operation of every product could be processed
by only one machine and positioned by only one fixture. Constraints (2),
(3) and (4) ensure that the matching relation between fixture and pallet
cannot change during the manufacturing once they are fixed. The sum of
start time and processing time is no more than completion time for each
operation is realized by constraints (5). And constraints (6) describes the
strict precedence of process route for every product. Otherwise, con-
straints (7) and constraints (8) make sure that one machine could be
occupied with at most one operation at the same time, similarly, con-
straints (9) and constraints (10) ensure that one fixture could be utilized
with at most one operation at the same time. Constraints (11), (12), (13)
and (14) describe the mutual relations among decision variables Yi,j,i′,j′,m,

Zi,j,i′,j′,f ,Xi,j,m,f and Xi′,j′,m,f and constraints (15) limit the makespan no less
than any completion time of all operations. In the end, constraints (16),
(17), (18) and (19) determine the basic variable types of all decision

Fig. 1. Gannt charts under different scenarios.

Table 2
Notation of proposed MIP model.

Notation Definition

I Product set,i = 1,2,⋯, |I|
M Machine set,m = 1,2,⋯, |M|

F Fixture set,f = 1,2,⋯, |F|
Ji Operation set of product i, i ∈ I
Oi,j j th operation of product i, i ∈ I, j ∈ Ji

Mi,j Eligible machine set of product i’s j th operation,i ∈ I, j ∈ Ji

Fi,j Eligible fixture set of product i’s j th operation,i ∈ I, j ∈ Ji

pti,j,m Processing time of product i’s j th operation on machine m, i ∈ I, j ∈ Ji,

m ∈ Mi,j

L A large number,L > 0
Si,j Continuous decision variable:

Start time of product i’s j th operation,i ∈ I, j ∈ Ji

Ci,j Continuous decision variable:
Completion time of product i’s j th operation,i ∈ I, j ∈ Ji

Cmax Continuous decision variable:
Makespan,Cmax > 0

Xi,j,m,f Binary decision variable:
It is equal to 1 if j th operation of product i is assigned to machine m and
positioned by fixture f；
otherwise, it is equal to 0. i ∈ I, j ∈ Ji,m ∈ Mi,j , f ∈ Fi,j,

Yi,j,i′,j′,m Binary decision variable:
It is equal to 1 if j th operation of product i precedes j′ th operation of
product i′ on machine m；
otherwise, it is equal to 0.i ∈ I, j ∈ Ji, i′∈ I\i, j′ ∈ Ji′ ,m ∈ Mij ∩ Mi′j′

Zi,j,i′,j′,f Binary decision variable:
It is equal to 1 if j th operation of product i precedes j′ th operation of
product i′ fixated by fixture f；
otherwise, it is equal to 0.i ∈ I, j ∈ Ji, i′∈ I\i, j′ ∈ Ji′ , f ∈ Fij ∩ Fi′j′

Um,f Binary decision variable:
It is equal to 1 if fixture f is put in the pallet station of machine m；
otherwise, it is equal to 0. m ∈ M, f ∈ F,

M. Liu et al.

Computers & Industrial Engineering 188 (2024) 109903

5

variables.

4. Proposed methodology

4.1. Framework of proposed algorithm

In MRFJSP-FPCO, varying fixtures are required for different opera-
tions along the process routes, and even a single operation may have
multiple eligible fixtures. Additionally, uncertain fixture-pallet combi-
nations have a huge effect on the generation of scheduling plans.
Evidently, FJSP involving fixture-pallet constraint is significantly more
intricate to address compared with the conventional FJSP, which is
already difficult to be solved by an exact algorithm in polynomial time.

Therefore, we propose an improved genetic algorithm hybrid with
feasibility correction strategy and self-learning variable neighbourhood
search (IGA-FCSSVNS). As machine-fixture-pallet resources are all
involved in the problem, a three-string chromosome structure is
designed to encode. An accompanying feasibility correction strategy is
designed to solve potential conflict of fixture-pallet shifting in the
initialization and evolution of the population. In the metaphase, we
introduce a self-learning VNS procedure, which gathers useful infor-
mation from the elite pool and constructs a search strategy repository,
leading the elite solutions to further optimize in the local search. The
framework of proposed IGA-FCSSVSN is shown in Fig. 2.

4.2. Chromosome encoding and decoding

With extra fixture-pallet constraint, TRFJSP-FPCO could be divided
into three subproblems: operation sequencing, machine selection and
fixture selection. And we design a three-string chromosome encoding
method, as shown in Fig. 3, which are noted as OS, MS, and FS
respectively corresponding to the three subproblems. It is not necessary
to introduce a fourth string to represent pallet information because the
fixture-pallet relation could be obtained directly from MS and FS
considering that every machine has an exclusive pallet station.

The length of every string is equal to the total amount of operations
of all products and every gene position filled with a number represents a
specific operation with extra information. In OS, number means product

index and the order it appears determines which operation this gene is.
For example, the fifth gene of OS in Fig. 3 refers to O3,1 because it is
encoded as 3 for the first time. While in MS and FS, the operation every
gene stands for is arranged in order of operation sequence within
product index. Besides, number represents machine index and fixture
index in MS and FS. For instance, the first gene of MS and FS in Fig. 3
contains the following information: first operation of first product O1,1 is
processed in machine M2 and positioned by fixture F1.

The decoding procedure of MRFJSP-FPCO is equivalent to that of
typical FJSP because the fixture-pallet combination is fixed, which has
no influence on decoding. Similar with the process in previous research
(Demir & İşleyen, 2014; Li & Gao, 2016), decoding is achieved by
iterating from left to right to find the corresponding operation in OS as
well as obtaining the allocated machine in MS and fixture in FS. And the
processing time of each operation is also determined by current OS and
MS gene. Fig. 4 shows an example of decoding mechanism.

4.3. Feasibility correction strategy

In three-string chromosome, the initialization and evolution of MS
and FS are independent, which may arouse conflict against the
assumption that fixture-pallet relationship should not be changed in the
manufacturing. An example is given in Fig. 5 to strengthen compre-
hension. MS and FS imply that machine M2 and machine M1 are
responsible for O2,1 and O3,1 respectively. However, both O2,1 and O3,1
require fixture F3 to hold, which is contrary to the preconditions of
MRFJSP-FPCO. Consequently, a feasibility correction strategy is offered
to solve this dilemma.

Assuming that the operation set where fixture F is required in string
FS is defined as O F, O F = {⋯, Oi,j, ⋯}, and the machine set corre-
sponding to operations in O F is defined as MO F , MO F = {⋯, MF , ⋯},
which is easy to obtain from string MS. For instance, O F2 = {O1,2,O2,2}

and MO F2
= {M3} in Fig. 5. In O F, the operation set where operations

have common optional machine is defined as O COM, O COM = {⋯, Ok,l,

⋯}. For example, O COM = {O1,2,O1,3,O2,2} if O1,2, O1,3 and O2,2 can be
processed by the same machine MCOM. Besides, the operation set where
operations have only one optional fixture F is defined as O Fonly,O Fonly =

{⋯,Om,n,⋯}. The strict definition of O COM and O Fonly is:

Fig. 2. Framework of IGA-FCSSVNS.

M. Liu et al.

Computers & Industrial Engineering 188 (2024) 109903

6

∀Oi,j,Ok,l ∈ O COM ,Oi,j ∕= Ok,l,Mi,j ∩ Mk,l ∕= ∅;

∀Oi,j ∈ O Fonly,Fi,j = {F}

O F, O COM, O Fonly, and MO F have the following properties:

Property1 : Feasiblitycorrectionisnotnecessaryif |MO F | = 1.

Property2 : O COM ⊆ O F, O Fonly ⊆ O F.

Property3 : if
⃒
⃒O Fonly

⃒
⃒ > 1,O Fonly ⊆ O COM .

Property4 : if O COM = ∅,
⃒
⃒O Fonly

⃒
⃒ ≤ 1.

Based on the properties above, the feasibility correction algorithm is
shown below.

Step 1: for every fixture F appeared in chromosome FS, judge if
|MO F | = 1. If yes, algorithm ends; else, move to step 2.

Step 2: judge if O COM = ∅. If yes, move to step3; else, calculate
|O Fonly|: if

⃒
⃒O Fonly

⃒
⃒ ≥ 1, move to step 4; else, move to step5.

Step 3: for operation who holds the least optional fixtures in O F,
corresponding MS and FS genes stay the same; for other operations in
O F, MS gene doesn’t need to change while FS gene should be modified
based on its eligible fixture set.

Step 4: operations in O Fonly keep the original FS gene, and change MS
gene into the common optional machine mFonly; for other operations, if
mFonly is not included in eligible machine set, MS gene stays unchanged
and FS gene should be substituted from the eligible fixture set; else,
correct MS gene into mFonly.

Step 5: operations in O COM keep the original FS gene, and change MS
gene into the common optional machine mCOM; for other operations, if
mCOM is not included in eligible machine set, MS gene stays unchanged
and FS gene should be substituted from the eligible fixture set; else,
correct MS gene into mCOm.

In conclusion, the feasibility correction is designed for three different
scenarios determined by |MO F |, O COM, and |O Fonly|. As shown in Fig. 6,
the restoration details are presented in a specific example.

4.4. Population initialization

The convergence speed and algorithm accuracy of proposed IGA-
FCSSVNS can be vitally impacted by the quality of initial chromo-
somes. In order to achieve effective optimisation, the initial population
must serve two purposes. Firstly, it should encompass a broad coverage
of the solution space, allowing for optimisation in all directions. Sec-
ondly, this population should also include high-quality or near-optimal
solutions, potentially accelerating the convergence process.

Therefore, a combination of random generation and multi heuristic
rules is applied in the initialization. Stochastically generated solutions
make up 75 % of the original population, which strengthen the variety of
community. And the rest is engendered by global search (GS) rule (Singh
& Mahapatra, 2016), shortest processing time (SPT) rule (Hamzadayi &
Yildiz, 2017), and most total work remaining (MTWR) rule (Dominic,
Kaliyamoorthy, & Kumar, 2004) with a percentage distribution of 23 %,
1 % and 1 % respectively. Feasibility correction strategy shown in sec-
tion 4.3. is already required at this stage.

Fig. 3. Three-string chromosome encoding example.

Fig. 4. Three-string chromosome decoding example.

Fig. 5. Conflict example of MS and FS.

M. Liu et al.

Computers & Industrial Engineering 188 (2024) 109903

7

4.5. Selection and reproduction

Similar with most metaheuristic algorithms, iterative optimisation is
mainly achieved by selection, crossover, and mutation. The fitness
whose value is the reciprocal of makespan after decoding is supposed to
be calculated and evaluated for every individual. And solutions with
bigger fitness value will be stored in the elite pool. After that, current
population as the parent will take a roulette wheel strategy (Teekeng &
Thammano, 2012) to select solutions and the selected ones will operate
the crossover and mutation with a certain probability to generate
offspring, which become the new parent. The process is repeated until
the maximum number of iterations is reached.

Precedence preservative crossover operator (Bierwirth & Mattfeld,

1999) and multi-times swap mutation operator (Tian et al., 2022) are
applied for string OS. While string MS chooses the multi-point crossover
operator (Zhang, Hu, Sun, & Zhang, 2020) and string FS takes the order
crossover operator (Zhang, Gao, & Shi, 2011), and both of them utilize
random mutation operator (Mahmudy, Marian, & Luong, 2013).

4.6. Self-learning VNS

In the mid-to-late stage of population iteration, a self-learning VNS
strategy is introduced to further improve the solution quality and
enhance the optimisation capacity of algorithm, and the iteration when
it starts is noted as IVNS Start in this work. As an effective local search
method, VNS has been proved to be quite useful in existing research

Fig. 6. Schematic diagram of feasibility correction.

M. Liu et al.

Computers & Industrial Engineering 188 (2024) 109903

8

work (Lei & Guo, 2014). On this basis, SVNS constructs a search re-
pository of three neighbourhood structures from the elite solution pool,
and iteratively implements VNS strategy preferences autonomously
through continuous learning, feedback and updating to optimize the
elite individuals.

4.6.1. Neighbourhood structure
Three neighbourhood structures are designed and implemented in

IGA-FCSSVNS.

• VNS1: VNS for string MS and string FS

Select k, k ∈ [1, |MS|] gene positions randomly from MS, substitute
original machine by machine with the minimum processing time for the
current operation. Afterwards, execute the feasibility correction strategy
for MS and FS.

• VNS2: VNS for string OS

Select k, k ∈ [1, |OS|] gene positions from string OS and put the cor-
responding operations in an inverse order.

• VNS3: VNS for string OS

Select two products i, i ∈ I and j, j ∕= i, j ∈ I randomly and put the
product in prior order if it has a smaller total operations number.

The schematic diagrams of VNS1, VNS2, and VNS3 are shown in
Fig. 7.

4.6.2. Search strategy repository
Search strategy repository is established with the aid of success and

failure knowledge matrixes filled with knowledge from previous VNS
iterations, which records the effect on elite solutions of VNS1, VNS2 and
VNS3 independently. General form of elements in the success knowledge
matrix is nS

ij, i ∈ {1,2,⋯,m}, j ∈ {1, 2, 3}, which represents how many
times structure VNS j improved the elite solution i in the current VNS
iteration. Similarly, nf

ij, i ∈ {1,2,⋯,m}, j ∈ {1,2, 3} in the failure
knowledge matrix refers to the total times that structure VNS j failed to
ameliorate the elite solution i in the current VNS iteration. And the
following relationship holds:

Fig. 7. Schematic diagrams of three neighbourhood structures.

M. Liu et al.

Computers & Industrial Engineering 188 (2024) 109903

9

∑3

j=1

(
ns

ij + nf
ij

)
= ITERVNS, ∀i ∈ {1, 2,⋯,m} (20)

In equation (20), ITERVNS refers to the number of VNS performed in
one iteration of IGA-FCSSVNS (Fig. 8).

4.6.3. Local search based on self-learning VNS
When VNS is first executed in the population, three VNS structures

are selected randomly to function on the elite solution during the early
stages, whose results are gathered to fill in the knowledge matrixes.
After a certain number of iterations, the algorithm reaches the iteration
IRandom, and the selection of VNS starts to be based on the statistical
probability knowledge extracted from the repository. Furthermore, the
effects are also fed back to the repository to ensure that dynamically
updated knowledge base always provides the most reliable policy rec-
ommendations. The detailed procedure of self-learning VNS algorithm is
shown below.

Step 1: parameter initialization. S*
c represents the best elite solution

of the current generation i, iVNS refers to the time of executed VNS in
current generation i and ITERVNS is the same meaning as in equation
(20). Initialize the ith row of knowledge matrixes by 0 and set iVNS to be 1.

Step 2: judge if iVNS > ITERVNS. If yes, output the latest best solution
S*

c and the process ends; else, continue.
Step 3: judge if i ≤ IRandom. If yes, VNS in this iteration will be done by

selecting randomly from VNSj, j ∈ {1, 2, 3}. Otherwise, a self-learning
VNS draft will be done with respect to equations (21), (22), and (23).

Step 4: perform VNS based on the chosen structure VNSj,j ∈ {1,2,3},
obtain a new solution S′.

Step 5: if fitness(S′) > fitness(S*
c), S*

c = S′, ns
ij = ns

ij + 1; else, S*
c stays

the same and nf
ij = nf

ij + 1.
Step 6: update P j, j ∈ {1,2, 3} in equation (23) based on the latest

repository, iVNS = iVNS + 1, move to step 2.

VNS = Random(VNS1,VNS2,VNS3|P 1,P 2,P 3) (21)

Pj =

∑i
k=1ns

kj
∑i

k=1ns
kj +

∑i
k=1nf

kj

, j ∈ {1, 2, 3} (22)

P j =
Pj

∑3
n=1Pn

, j ∈ {1, 2, 3} (23)

The mechanism of the procedure above is shown in Fig. 9.

5. Numerical experiments

To verify the correctness of MIP model formulated in section 3.2, we
chose CPLEX, a high-powered mathematical programming solver
commonly used in academia and industry, solving the model of MRFJSP-
FPCO and comparing the results with that of IGA-FCSSVNS. Besides, two
additional sets of algorithms were designed as control groups to

demonstrate the superiority of the proposed feasibility correction
strategy and self-learning VNS mechanism. Every test example was
repeated 5 times given the stochastic attribute of metaheuristic algo-
rithms and all experiments in this research were coded in Python3.8 and
conducted on a personal computer configured with an AMD Ryzen 7
4800HS CPU @ 2.90 GHz + 16 GB RAM.

5.1. Case introduction

We investigated the current situation of scheduling in a leading en-
gine manufacturing industry in northern China and found that fixture-
pallet resources had become the most prominent constraints in the
production planning process of the new product trial center of the
company. Different products may require various kinds of fixtures,
which could be met in different pallets of corresponding machines, as
shown in Fig. 10. Therefore, we utilized first-hand data from this
workshop as the basis for generating various scales of test cases covering
process routes of 15 different kinds of products. There are 107 opera-
tions in total within all categories, and every product route consists of 5
to 10 operations, where 25 machines and 61 fixtures are required during
the whole process.

The partition of test cases is based on the scale of the production
system, which encompasses the number of product types, products,
machines, and fixtures. Three distinct categories include small, medium,
and large scale, whose detailed data composition is shown in Table 3.
For instance, the small-scale case includes 5 to 10 pieces of products
belonging to 5 categories, where 16 machines and 25 fixtures are suf-
ficient and available for scheduling.

Furthermore, every category is composed of several different sub-
cases, which are named in the format as P − M − F, where P, M, and F
refer to the total volume of production, total amount of machines and
total number of fixtures respectively. And every subcase also includes
various examples with different order information. For instance, subcase
5 − 16 − 25 represents that there are 5 products in this test subcase with
16 machines and 25 fixtures to choose. However, 5 products may refer to
2 pieces of product 1, 2 pieces of product 2 and 1 piece of product 3
(example 1) or 1 piece from product 1 to product 5 respectively
(example 2). In our experiments, two or three examples are designed in
every subcase to test the applicability of proposed algorithm under
different scenarios.

5.2. Parameter settings

We set the time limit to 3600 s, 14400 s, and 14400 s for small,
medium, and large-scale cases respectively in CPLEX solver. If CPLEX is
unable to find the theoretical global optimum within time limit, the
current best solution is used as the result.

As mentioned above, two extra groups of algorithms are tested in
comparison with IGA-FCSSVNS. The first is the classical genetic algo-
rithm (GA) with penalty in fitness function to promote the legalization of
MS and FS wherever possible, which aims to demonstrates the

Fig. 8. Schematic diagram of search strategy repository.

M. Liu et al.

Computers & Industrial Engineering 188 (2024) 109903

10

effectiveness of feasibility correction strategy in our work. On this basis,
the second is the genetic algorithm hybrid with feasibility correction
strategy (GA-FCS), which further proves the advantage of our self-
learning VNS method. Like Pezzella et al. (2008) and Fan et al.
(2022), we conducted experiments with various values for the key pa-
rameters and introduced an adaptive mechanism characterized by lin-
early decreasing crossover and mutation ratios. The selected parameter
values are shown in Table 4.

5.3. Performance analysis

Following the parameter settings in section 5.2, we tested 18 groups
of examples under 8 subcases with the comparison among CPLEX, GA,
GA-FCS and IGA-FCSSVNS. The experimental results are shown in

Fig. 9. Structure of self-learning VNS algorithm.

Fig. 10. Fixture-pallet resources in engine manufacturing workshop.

Table 3
Classification of test cases.

Case
classification

Product
type

Production
volume

Machine
number

Fixture
number

Small-scale 5 5–10 16 25
Medium-scale 5–10 30–40 16–20 25–52
Large-scale 10–15 50–60 20–25 52–61

Table 4
Parameter settings.

Notation Meaning Value

population Population scale in the algorithm. 300
totaliteration Total iteration times in the algorithm. 150
PcMAX Crossover probability in the beginning of the iteration

process as it is designed to be linearly decreasing.
0.7

PcMIN Crossover probability in the end of the iteration process. 0.5
PmMAX Mutation probability in the beginning of the iteration

process as it is designed to be linearly decreasing.
0.35

PmMIN Mutation probability in the end of iteration process. 0.2
IVNS Start Iteration number when the self-learning VNS begins. 80
IRandom Upper bound of iteration when VNS is chosen randomly. 110
ITERVNS Total amount of VNS performed in one iteration. 30

M. Liu et al.

Computers & Industrial Engineering 188 (2024) 109903

11

Table 5, where Opti, i ∈ {2,3,4} refers to the makespan (in minutes)
recorded in repeated experiments for every test example, Opti, i ∈ {1,2,
3, 4} represents the mean value of optimal solutions (in minutes), and
tCPU stands for the average computation time (in seconds).

We calculate the following evaluation indicators based on data in
Table 5. Q1, Q2, and Q3 are introduced to measure the relative deviation
of solutions obtained by different methods, which are defined in equa-
tions (24). And it is evident that a negative Q value indicates that pro-
posed IGA-FCSSVNS performs better than method in comparison. The
detailed values of indicators are shown in Table 6.

Qi =
Opt4 − Opti

Opti
× 100%, i ∈ {1, 2, 3} (24)

In subcase 5 − 16 − 25, both CPLEX and IGA-FCSSVNS can find the
global optimal solution of example 1 and example 2 in a short time,
verifying the correctness of proposed MIP model, but GA and GA-FCS

can only obtain the average optimal solution within 4.18 % and 1.52
% relative deviation from the global optimal solution. In subcase
10 − 16 − 25, CPLEX fails to find the global optimal solution within 7200
s, while IGA-FCSSVNS achieves an approximate optimal solution no
more than 1.44 % different from CPLEX solution within 450 s, which
also outperforms the other two.

The advantage of IGA-FCSSVNS begins to emerge as the test scale
expands. From subcase 30 − 20 − 52 to subcase 60 − 25 − 61, CPLEX
could not obtain theoretical optimal solution within 14,400 s. However,
IGA-FCSSVNS outperforms CPLEX in all examples, where Q1 can even
reach − 24.56 % and –32.34 % in example 2 of subcase 30 − 20 − 52 and
subcase 60 − 25 − 61. In contrast, GA-FCS obtains a better solution than
CPLEX in certain examples, while in other cases, it exhibits inferior
performance. And GA always provides the worst result in medium and
large-scale cases.

Table 5 and Table 6 show evidently that GA method always provides
the worst solution in all kinds of cases, especially in medium and large-
scale cases, where Q2 is even as high as − 30 % to − 50 %. This phe-
nomenon is reasonable as the penalty strategy in GA method can only
passively punish infeasible MS-FS strings, not actively promote correc-
tion of chromosome. Comparing GA and GA-FCS individually, we can
find that Q3 is always bigger than Q2 although GA-FCS is not as good as
GA-FCSVNS. And this advantage becomes more and more obvious as the
size of test case increases, which demonstrates the effectiveness of
feasibility correction strategy. Besides, iteration curves achieved by
CPLEX, GA, GA-FCS and IGA-FCSSVNS of representative examples are
shown in Fig. 11 to observe the performances of algorithms in iteration
process. GA method always converge to an unsatisfactory solution at an
early stage while GA-FCS method converges during the mid-term with
an acceptable solution, which further improves the value of feasibility
correction.

Given the large gap between GA and other methods, iterations curves
without GA are redrawn as shown in Fig. 12, which aims to provide a
better view of the local features of GA-FCS and IGA-FCSSVNS. Consistent
with information reflected in Table 6, IGA-FCSSVNS and CPLEX both
obtain the global optimal solution in small-scale cases (except for the
subcase 10 − 16 − 25); in medium and large-scale cases, IGA-FCSSVNS is
far superior to CPLEX. Most importantly, green curve (IGA-FCSSVNS)
shows an evident downward trend compared with the blue one (GA-
FCS) after the introduction of self-learning VNS mechanism starting
from the 80th generation, and eventually obtains a better solution than
any other method. This characteristic reveals the local breakthrough

Table 5
Experiment results.

Scale Subcase Example CPLEX GA GA-FCS IGA-FCSSVNS

tCPU Opt1 tCPU Opt2 Opt2 tCPU Opt3 Opt3 tCPU Opt4 Opt4

Small 5–16-25 1 0.28 218 111.00 226 232.20 195.60 219 219.00 191.20 218 218.00
2 1.59 234 113.20 239 244.20 137.00 236 237.60 124.00 234 234.00
3 18.17 284 127.60 302 313.80 144.00 289 293.20 148.00 285 287.20

10–16-25 1 7200.00 277 259.80 344 356.00 245.20 284 287.20 251.00 277 281.00
2 7200.00 302 259.20 369 403.40 251.20 318 322.40 251.00 303 304.20
3 7200.00 252 254.40 308 319.20 439.00 258 269.00 444.00 253 254.80

Medium 30–20-52 1 14400.00 568 995.60 820 886.00 919.80 555 560.40 962.00 532 545.20
2 14400.00 758 1007.80 822 863.80 1065.40 586 599.00 1038.00 566 571.80

35–16-25 1 14400.00 986 1560.60 1345 1419.40 1658.00 843 852.00 1683.80 804 815.60
2 14400.00 798 1592.40 1254 1403.00 1700.00 818 836.40 1697.00 773 792.80

40–20-52 1 14400.00 758 1490.60 1097 1232.80 1461.00 739 763.40 1528.60 708 718.60
2 14400.00 848 1559.00 1157 1291.80 1543.20 753 774.00 1617.40 729 748.60

Large 50–25-61 1 14400.00 690 1928.20 1135 1163.00 1874.60 692 705.00 2037.00 649 677.60
2 14400.00 833 1970.20 1163 1221.20 1959.80 683 730.60 2127.00 669 685.40

55–20-52 1 14400.00 1394 2566.80 1663 1696.60 2426.60 1017 1047.40 2553.00 926 954.20
2 14400.00 1231 2354.80 1554 1584.60 2285.00 1003 1023.40 2474.40 956 1001.00

60–25-61 1 14400.00 992 2669.00 1327 1425.40 2546.40 815 837.00 2615.60 791 804.40
2 14400.00 1319 2935.60 1553 1583.20 2920.00 915 943.80 3030.40 869 892.60

Table 6
Relative deviation calculation.

Scale Subcase Example Q1 Q2 Q3

Small 5-16-25 1 0.00 % − 6.12 % − 0.46 %
2 0.00 % − 4.18 % − 1.52 %
3 1.13 % − 8.48 % − 2.05 %

10-16-25 1 1.44 % − 21.07 % − 2.16 %
2 0.73 % − 24.59 % − 5.65 %
3 1.11 % − 20.18 % − 5.28 %

Average relative deviation 0.74 % − 14.10 % − 2.85 %

Medium 30–20-52 1 − 4.01 % − 38.47 % − 2.71 %
2 − 24.56 % –33.80 % − 4.54 %

35-16-25 1 − 17.28 % − 42.54 % − 4.27 %
2 − 0.65 % − 43.49 % − 5.21 %

40-20-52 1 − 5.20 % − 41.71 % − 5.87 %
2 − 11.72 % − 42.05 % − 3.28 %

Average relative deviation − 10.57 % − 40.34 % − 4.31 %

Large 50-25-61 1 − 1.80 % − 41.74 % − 3.89 %
2 − 17.72 % − 43.87 % − 6.19 %

55-20-52 1 − 31.55 % − 43.76 % − 8.90 %
2 − 18.68 % − 36.83 % − 2.19 %

60-25-61 1 − 18.91 % − 43.57 % − 3.89 %
2 –32.33 % − 43.62 % − 5.42 %

Average relative deviation − 20.17 % − 42.23 % − 5.08 %

M. Liu et al.

Computers & Industrial Engineering 188 (2024) 109903

12

capability of self-learning VNS.
In general, MIP model targeting on MRFJSP-FPCO is unable to pro-

duce a high-quality solution within the ideal time in a complex scenario
with complicated resources constraints as well as fixture-pallet combi-
natorial optimisation. Whereas IGA-FCSSVNS is able to find an excellent
solution within a relatively short time, with the aid of feasibility
correction strategy and self-learning VNS.

6. Conclusion

In this paper, we concentrate on a brand-new flexible job shop
scheduling problem considering tri-resource constraints of fixture-
pallet-machine, in which a MIP model is formulated, and an algorithm
named IGA-FCSSVNS is proposed and tested. To ensure the legality of
individuals during the entire iteration process, feasibility repair strate-
gies targeted at chromosome strings MS and FS are introduced.
Furthermore, a self-learning variable neighbourhood search is achieved
in the later stages of iteration through the establishment of knowledge
matrixes and VNS repository. The effectiveness and superiority of IGA-
FCSSVNS are verified through solving various examples under
different scales based on real production scenarios from a leading engine
manufacturer in China.

Unlike common production scheduling, IGA-FCSSVNS not only ex-
ecutes optimal machine selection and sequence arrangement for

operations, but also optimizes the combination of fixture-pallet re-
sources. It closely adheres to the actual production needs of workshop
and has high potential for application in the era of intelligent
transformation.

In our study, there are several potential avenues to explore for future
improvement. First, the set-up time of fixtures could be taken into
consideration as it satisfies the real demand in factory, and it may vary
with different types of products. In addition, further research is needed
to address timely and reasonable dynamic response to abnormal con-
ditions in the flexible workshops. Finally, as the current research boom
in the field of intelligent decision making, how to apply latest deep
reinforcement learning methodology in combinatorial optimisation also
deserves our attention.

Funding

This work was funded by National Natural Science Foundation of
China (Grant No. 52275499), and the National Key Research and
Development Program of China (No. 2022YFF0605700).

CRediT authorship contribution statement

Molin Liu: Conceptualization, Methodology, Software, Writing –
original draft. Jun Lv: Writing – review & editing. Shichang Du:

Fig. 11. Iteration curves of representative cases (GA method included).

M. Liu et al.

Computers & Industrial Engineering 188 (2024) 109903

13

Supervision. Yafei Deng: Validation, Visualization. Xiaoxiao Shen:
Investigation. Yulu Zhou: Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The data that has been used is confidential.

References

Bierwirth, C., & Mattfeld, D. C. (1999). Production scheduling and rescheduling with
genetic algorithms. Evolutionary Computation, 7(1), 1–17.

Brucker, P., & Schlie, R. (1990). Job-shop scheduling with multipurpose machines.
Computing.

Cañas, H., Mula, J., Díaz-Madroñero, M., & Campuzano-Bolarín, F. (2021). Implementing
industry 4.0 principles. Computers & Industrial Engineering, 158, Article 107379.

Chan, F., Wong, T., & Chan, L. (2006). Flexible job-shop scheduling problem under
resource constraints. International Journal of Production Research, 44(11),
2071–2089.

Chen, R., Yang, B., Li, S., & Wang, S. (2020). A self-learning genetic algorithm based on
reinforcement learning for flexible job-shop scheduling problem. Computers &
Industrial Engineering, 149, Article 106778.

Defersha, F. M., Obimuyiwa, D., & Yimer, A. D. (2022). Mathematical model and
simulated annealing algorithm for setup operator constrained flexible job shop
scheduling problem. Computers & Industrial Engineering, 171, Article 108487.

Demir, Y., & İşleyen, S. K. (2014). An effective genetic algorithm for flexible job-shop
scheduling with overlapping in operations. International Journal of Production
Research, 52(13), 3905–3921.

Ding, H., & Gu, X. (2020). Improved particle swarm optimization algorithm based novel
encoding and decoding schemes for flexible job shop scheduling problem. Computers
& Operations Research, 121, Article 104951.

Dominic, P. D., Kaliyamoorthy, S., & Kumar, M. S. (2004). Efficient dispatching rules for
dynamic job shop scheduling. The International Journal of Advanced Manufacturing
Technology, 24, 70–75.

Fan, J., Shen, W., Gao, L., Zhang, C., & Zhang, Z. (2021). A hybrid Jaya algorithm for
solving flexible job shop scheduling problem considering multiple critical paths.
Journal of Manufacturing Systems, 60, 298–311.

Fan, J., Zhang, C., Liu, Q., Shen, W., & Gao, L. (2022). An improved genetic algorithm for
flexible job shop scheduling problem considering reconfigurable machine tools with
limited auxiliary modules. Journal of Manufacturing Systems, 62, 650–667.

Fattahi, P., Saidi Mehrabad, M., & Jolai, F. (2007). Mathematical modeling and heuristic
approaches to flexible job shop scheduling problems. Journal of Intelligent
Manufacturing, 18, 331–342.

Gong, G., Chiong, R., Deng, Q., & Gong, X. (2020). A hybrid artificial bee colony
algorithm for flexible job shop scheduling with worker flexibility. International
Journal of Production Research, 58(14), 4406–4420.

Gothwal, S., & Raj, T. (2017). Different aspects in design and development of flexible
fixtures: Review and future directions. International Journal of Services and Operations
Management, 26(3), 386–410.

Hajibabaei, M., & Behnamian, J. (2021). Flexible job-shop scheduling problem with
unrelated parallel machines and resources-dependent processing times: A tabu
search algorithm. International Journal of Management Science and Engineering
Management, 16(4), 242–253.

Hamzadayi, A., & Yildiz, G. (2017). Modeling and solving static m identical parallel
machines scheduling problem with a common server and sequence dependent setup
times. Computers & Industrial Engineering, 106, 287–298.

Lei, D., & Guo, X. (2014). Variable neighbourhood search for dual-resource constrained
flexible job shop scheduling. International Journal of Production Research, 52(9),
2519–2529.

Fig. 12. Iteration curves of representative cases (without GA method).

M. Liu et al.

http://refhub.elsevier.com/S0360-8352(24)00024-X/h0005
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0005
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0010
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0010
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0015
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0015
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0020
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0020
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0020
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0025
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0025
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0025
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0030
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0030
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0030
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0035
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0035
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0035
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0040
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0040
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0040
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0045
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0045
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0045
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0050
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0050
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0050
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0055
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0055
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0055
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0060
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0060
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0060
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0065
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0065
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0065
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0070
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0070
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0070
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0075
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0075
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0075
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0075
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0080
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0080
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0080
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0085
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0085
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0085

Computers & Industrial Engineering 188 (2024) 109903

14

Lei, K., Guo, P., Zhao, W., Wang, Y., Qian, L., Meng, X., & Tang, L. (2022). A multi-action
deep reinforcement learning framework for flexible Job-shop scheduling problem.
Expert Systems with Applications, 205, Article 117796.

Li, R., Gong, W., & Lu, C. (2022). Self-adaptive multi-objective evolutionary algorithm
for flexible job shop scheduling with fuzzy processing time. Computers & Industrial
Engineering, 168, Article 108099.

Li, X., & Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for flexible
job shop scheduling problem. International Journal of Production Economics, 174,
93–110.

Li, X., Peng, Z., Du, B., Guo, J., Xu, W., & Zhuang, K. (2017). Hybrid artificial bee colony
algorithm with a rescheduling strategy for solving flexible job shop scheduling
problems. Computers & Industrial Engineering, 113, 10–26.

Mahmudy, W. F., Marian, R. M., & Luong, L. H. (2013). Real coded genetic algorithms for
solving flexible job-shop scheduling problem-Part II: Optimization (Vol. 701). Trans Tech
Publ.

Meng, L., Zhang, C., Ren, Y., Zhang, B., & Lv, C. (2020). Mixed-integer linear
programming and constraint programming formulations for solving distributed
flexible job shop scheduling problem. Computers & Industrial Engineering, 142, Article
106347.

Müller, D., Müller, M. G., Kress, D., & Pesch, E. (2022). An algorithm selection approach
for the flexible job shop scheduling problem: Choosing constraint programming
solvers through machine learning. European Journal of Operational Research, 302(3),
874–891.

Naderi, B., & Roshanaei, V. (2022). Critical-path-search logic-based benders
decomposition approaches for flexible job shop scheduling. INFORMS Journal on
Optimization, 4(1), 1–28.

Osterrieder, P., Budde, L., & Friedli, T. (2020). The smart factory as a key construct of
industry 4.0: A systematic literature review. International Journal of Production
Economics, 221, Article 107476.

Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the flexible
job-shop scheduling problem. Computers & Operations Research, 35(10), 3202–3212.

Ren, W., Wen, J., Yan, Y., Hu, Y., Guan, Y., & Li, J. (2021). Multi-objective optimisation
for energy-aware flexible job-shop scheduling problem with assembly operations.
International Journal of Production Research, 59(23), 7216–7231.

Singh, M. R., & Mahapatra, S. S. (2016). A quantum behaved particle swarm optimization
for flexible job shop scheduling. Computers & Industrial Engineering, 93, 36–44.

Soto, C., Dorronsoro, B., Fraire, H., Cruz-Reyes, L., Gomez-Santillan, C., & Rangel, N.
(2020). Solving the multi-objective flexible job shop scheduling problem with a
novel parallel branch and bound algorithm. Swarm and Evolutionary Computation, 53,
Article 100632.

Teekeng, W., & Thammano, A. (2012). Modified genetic algorithm for flexible job-shop
scheduling problems. Procedia Computer Science, 12, 122–128.

Thörnblad, K., Strömberg, A.-B., Patriksson, M., & Almgren, T. (2015). Scheduling
optimisation of a real flexible job shop including fixture availability and preventive
maintenance. European Journal of Industrial Engineering, 9(1), 126–145.

Tian, Y., Gao, Z., Zhang, L., Chen, Y., & Wang, T. (2023). A multi-objective optimization
method for flexible job shop scheduling considering cutting-tool degradation with
energy-saving measures. Mathematics, 11(2), 324.

Tian, Y., Xiong, T., Liu, Z., Mei, Y., & Wan, L. (2022). Multi-objective multi-skill resource-
constrained project scheduling problem with skill switches: Model and evolutionary
approaches. Computers & Industrial Engineering, 167, Article 107897.

Vallikavungal Devassia, J., Salazar-Aguilar, M. A., & Boyer, V. (2018). Flexible job-shop
scheduling problem with resource recovery constraints. International Journal of
Production Research, 56(9), 3326–3343.

Wu, X., Peng, J., Xiao, X., & Wu, S. (2021). An effective approach for the dual-resource
flexible job shop scheduling problem considering loading and unloading. Journal of
Intelligent Manufacturing, 32, 707–728.

Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible job-
shop scheduling problem. Expert Systems with Applications, 38(4), 3563–3573.

Zhang, G., Hu, Y., Sun, J., & Zhang, W. (2020). An improved genetic algorithm for the
flexible job shop scheduling problem with multiple time constraints. Swarm and
Evolutionary Computation, 54, Article 100664.

Zhang, J., Ding, G., Zou, Y., Qin, S., & Fu, J. (2019). Review of job shop scheduling
research and its new perspectives under Industry 4.0. Journal of Intelligent
Manufacturing, 30, 1809–1830.

M. Liu et al.

http://refhub.elsevier.com/S0360-8352(24)00024-X/h0090
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0090
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0090
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0095
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0095
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0095
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0100
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0100
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0100
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0105
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0105
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0105
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0115
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0115
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0115
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0115
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0120
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0120
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0120
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0120
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0125
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0125
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0125
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0130
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0130
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0130
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0135
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0135
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0140
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0140
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0140
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0145
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0145
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0150
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0150
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0150
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0150
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0155
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0155
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0160
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0160
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0160
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0165
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0165
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0165
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0170
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0170
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0170
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0175
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0175
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0175
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0180
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0180
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0180
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0185
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0185
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0190
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0190
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0190
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0195
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0195
http://refhub.elsevier.com/S0360-8352(24)00024-X/h0195

	Multi-resource constrained flexible job shop scheduling problem with fixture-pallet combinatorial optimisation
	1 Introduction
	2 Literature review
	3 Problem formulation
	3.1 Problem description
	3.2 Mathematical formulation

	4 Proposed methodology
	4.1 Framework of proposed algorithm
	4.2 Chromosome encoding and decoding
	4.3 Feasibility correction strategy
	4.4 Population initialization
	4.5 Selection and reproduction
	4.6 Self-learning VNS
	4.6.1 Neighbourhood structure
	4.6.2 Search strategy repository
	4.6.3 Local search based on self-learning VNS

	5 Numerical experiments
	5.1 Case introduction
	5.2 Parameter settings
	5.3 Performance analysis

	6 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

